Estimating the Additional Hospital Inpatient Cost and Mortality Associated with Selected Hospital-Acquired Conditions. (2017). Agency for Healthcare Research & Quality. Retrieved from: https://www.ahrq.gov/professionals/quality-patient-safety/pfp/haccost2017- results.html
Andel, C., Davidow, S.L., Hollander, M., Moreno, D.A. (2012). The economics of health care quality and medical errors. Journal of Health Care Finance,39(1), 39-50.
Clinical Decision Support Systems (2019). Retrieved from: https://psnet.ahrq.gov/primer/clinical-decision-support-systems
Sheth, H. S., Faust-Smith, K., Sanders, J. L., & Palmer, R. M. (2013). Screening for injurious falls in acute care hospitals. Journal of Patient Safety, 9(1), 24–28.
Fields, J., Alturkistani, T., Kumar, N., Kanuri, A., Deeb, Munn, S., & Blazey-Martin, D. (2015). Prevalence and cost of imaging in inpatient falls: The rising cost of falling. Clinicoecon Outcomes Res, 7, 281-286. http://dx.doi.org/10.2147/CEOR.S80104
Hitcho, E. B., Krauss, M. J., Birge, S., Dunagan, W. C., Fischer, I., Johnson, S., . . . Fraser, V. J. (2004). Characteristics and circumstances of falls in a hospital setting. Journal of General Internal Medicine, 19(7), 732-739. doi:10.1111/j.1525-1497.2004.30387.x
Cho, I., Boo, E., Chung, E., Bates, D. W., & Dykes, P. (2019). Novel Approach to Inpatient Fall Risk Prediction and Its Cross-Site Validation Using Time-Variant Data. Journal of Medical Internet Research, 21(2). doi:10.2196/11505
Lee, J. Y., Jin, Y., Piao, J., & Lee, S. (2016). Development and evaluation of an automated fall risk assessment system. International Journal for Quality in Health Care, 28(2), 175-182. doi:10.1093/intqhc/mzv122
Yokota, S., & Ohe, K. (2016). Construction and evaluation of FiND, a fall risk prediction model of inpatients from nursing data. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27040735
Poe, S.S., Cvach, M.M., Gartrell, D.G., Radzik, B.R., Joy, T.L. (2005). An evidence-based approach to fall risk assessment, prevention, and management: lessons learned. Journal of Nursing Care Quality, 20, 107–118. https://doi.org/10.1097/00001786-200504000-00004
Poe, S.S., Cvach, M., Dawson, P.B., Straus, H., Hill, E.E. (2007). The Johns Hopkins fall risk assessment tool: Post implementation evaluation. Journal of Nursing Care Quality, 22, 293–298. https://doi.org/10.1097/ 01.NCQ.0000290408.74027.39
Cognitive Computing Model Brief: Inpatient Risk of Falls. (Last updated September 2, 2020). Retrieved from: https://galaxy.epic.com/Redirect.aspx?DocumentID=100014430&PrefDocID=113766
Zhang, J., Wang, M., Liu, Y. (2016). Psychometric validation of the Chinese version of the Johns Hopkins Fall Risk Assessment Tool for older Chinese inpatients. Journal of Clinical Nursing, 25, 2846–2853. https:// doi.org/10.1111/jocn.13331
Kim, K.S., Kim, K.A., Choi, Y.K., et al. (2011). A comparative study of the validity of fall risk assessment scales in Korean hospitals. Asian Nursing Research, 5(1), 28-37.
Klinkenberg, W.D., Potter, P. (2016). Validity of the Johns Hopkins Fall Risk Assessment Tool for predicting falls on inpatient medicine services. Journal of Nursing Care Quality, 32(2), 108-113 DOI: 10.1097/NCQ.0000000000000210
Damoiseaux-Volman, B. A., van Schoor, N. M., Medlock, S., Romijn, J. A., van der Velde, N., & Abu-Hanna, A. (2022). External validation of the Johns Hopkins Fall Risk Assessment Tool in older Dutch hospitalized patients. European geriatric medicine, 1–9. Advance online publication. https://doi.org/10.1007/s41999-022-00719-0
Carroll, C., Arnold, L. A., Eberlein, B., Westenberger, C., Colfer, K., Naidech, A. M., Ramsey, K., & Sturgeon, C. (2022). Comparison of Two Different Models to Predict Fall Risk in Hospitalized Patients. Joint Commission journal on quality and patient safety, 48(1), 33–39. https://doi.org/10.1016/j.jcjq.2021.09.009